University attendance has been linked to a wide range of individual and societal benefits, including improved psychological wellbeing, better physical health, reduction in crime rates, and greater levels of civic engagement (see Brennan, Durazzi, & Séné, 2013 for review). However, many students face serious challenges in gaining access to undergraduate education. I respect and appreciate the sacrifices that students make in order to be able to show up to my class every week, and as such, my primary goal as an instructor is to make sure that these sacrifices are well worth the students' efforts. How can I ensure that students take away something valuable from my class that will leave them with a more positive attitude toward education generally, as well as toward the discipline of psychology more specifically? In my classes, I strive to meet these goals by improving students' understanding of core scientific principles.

One intellectual tool that I believe to be beneficial for every student is a solid scientific framework for understanding information. Whether students have their sights set on postgraduate education (law school, medical school, graduate school), becoming informed citizens, or simply making better decisions in their personal lives, being able to critically evaluate information and evidence is an essential skill that will serve them well. One of the broader themes of my classes is the idea that some information and evidence is objectively better than others. I try to help my students hone their critical thinking skills so that they may better sort out solid evidence from misleading rhetoric. For example, in my fourth year class on relationships, I incorporate pop psychology claims from relationship "experts" into my lectures, often juxtaposing them with research studies that reach the opposite conclusion. I also assign students a term paper in which they are asked to find a relationship advice column and evaluate it by drawing from empirical research: what claims are consistent with relationship science, and what claims are inconsistent? Students find these types of exercises highly enjoyable, and it is my hope that they will also help students to become more critical and skeptical consumers of information.

It is hard to evaluate scientific claims if you do not understand the science behind them. A second way in which I try to help students to build a strong scientific framework is by enhancing their understanding of how science gets conducted. In my classes, I make every effort to show students the "behind the scenes" work that goes into research. In my lectures, I emphasize gaps, controversies, and limitations that remain in the field: what research puzzles remain unsolved, and what challenges are currently limiting us from solving them? Again, I feel that this approach will be applicable for students across a broad range of interests and goals. For students who are considering a career in science, I hope that my class will give them further inspiration to pursue those goals, as well as the skills they will need to achieve those goals. For students who have other ambitions, I hope that the analytical skills they have honed in my class will be broadly applicable and transferable, helping them to succeed in their careers and in their personal lives.
TEACHING EXPERIENCE

Thus far, I have had the opportunity to teach a third year class on social psychology (University of Utah) and I was a regular instructor of a fourth year class on close relationships during graduate school (University of Toronto). I have received above-average departmental ratings for every class I have taught (e.g., 5.44/6 average instructor rating for my most recent class), as well as heart-warming qualitative feedback. For example, on my most recent evaluation from Fall 2016, a student wrote, “Dr. Joel is obviously very engaging and passionate about psychology in general and seems to really believe what she teaches.” These positive experiences continue to fuel my passion for teaching at the university level.

I am particularly looking forward to teaching a graduate-level seminar next semester (PSY7964) on relationship development. The class will be structured in terms of ongoing debates in the field. For example, on February 2, we will explore whether ovulation influences mate choice. Assigned readings will include a meta-analysis showing that it does (Gildersleeve et al., 2014a), another meta-analysis of the same literature showing that it does not and claiming that evidence of the effect is due to p-hacking (Wood et al., 2014), a commentary arguing that the evidence is not an artefact of p-hacking (Gildersleeve at al., 2014b), and a methods paper claiming that we cannot reach a satisfying conclusion because our methods are flawed (Blake et al., 2016). I hope that the structure of this class will make a compelling case that scientists do not have everything “figured out”, thus inspiring new scholars to make their own bold new contributions to the field.

MENTORING

Science relies on the willingness of accomplished researchers to share their skills and insights with more junior scholars. My many mentors over the years have devoted herculean efforts to helping me get where I am, and I am committed to paying it forward. My mentoring approach focuses on autonomy support (e.g., Black & Deci, 2000). In my experience, the students who succeed in research tend to be those who experience intrinsic motivation and a sense of ownership over their projects. I try to facilitate those things through scaffolding: I assess the student’s goals as well as their current strengths and weaknesses, and then I strive to give them the particular mixture of challenge and guidance that they need to achieve their goals. As a graduate student, I had many opportunities to hone this mentoring approach, with talented undergraduate students such as Yasmin Elahi, who completed her Honor’s thesis with me in 2015 and who is now a graduate student at NYU.

Taking a student’s autonomy seriously often requires some divergence from one’s own research program. To do this while also ensuring the quality of the research, I bring in collaborators with expertise that is directly relevant to the student’s interests. For example, I am currently working with a graduate student, Sierra Cronan, who is interested in physiological synchrony. We have added a psychophysiological component to my lab’s new seed grant study, and we have also included her main advisor Bert Uchino on the project, who specializes in psychophysiological methods. Similarly, I am currently supervising an undergraduate student, Annelise Murphy, who is interested in consensual non-monogamy. I connected her with Amy Muise who has expertise on open relationships, and we are now conducting a longitudinal study examining people’s motives for opening their relationships prospectively (Murphy, Joel, & Muise, in prep). Helping students to achieve their own research goals continues to be one of the most rewarding aspects of my job.