I am passionate about graduate and undergraduate teaching and bring this enthusiasm to my work with students in classroom settings as well as in consultation and small group settings. My position in the department is one that balances (a) quantitative instruction and consultation with (b) basic and applied clinical research on couples. My current teaching and plans for future developments reflect this dual role, and my expertise in both applied statistics and couple therapy. My current teaching involves graduate and undergraduate statistics courses (Quantitative Methods I, Multilevel Modeling, and Advanced Methodological and Statistical Issues in Dyadic Research) as well as statistical consultation on masters and dissertation theses, conference submissions, journal manuscripts, and grant submissions. My plans for future development include developing our on-going graduate-level training in couple therapy into a formal course. I have been deeply honored to be recognized for my teaching during my time at USC by receiving the Mellon Mentoring Award and being nominated for the Parent’s Association Teaching Award and to have received continued recognition of my teaching at the University of Utah by being selected as a finalist for the University Superior Teaching Award in 2014 and being nominated for an Early Career Teaching Award this year. I outline my teaching philosophy as well as recent innovations and plans for future curriculum development in both statistics and couple therapy below.

Teaching philosophy

My approach to teaching is rooted in the belief that learning is the product of a dynamic, transactional process between teacher and student that works best when it involves bi-directional feedback and ongoing adaptation. In my experience, learning is maximized when students are engaged in a collaborative enterprise with professors and classmates, are challenged to think deeply about how to apply acquired knowledge to answer questions and solve problems, and are encouraged to participate actively in learning both inside and outside of the classroom. One way that I pursue these goals in my graduate teaching is to balance and sequence skills and knowledge acquisition in the classroom with direct application to students’ on-going research through course assignments. I encourage students to use course assignments as a way to examine the statistical aspects of their research thoroughly and to get a “pre-review” of the statistical elements of that work. It has been very gratifying to hear from students that this approach has been helpful in developing concrete work products from course assignments. In my three years teaching the Multilevel Modeling course, two students adapted their final course assignment into a conference poster (one of which won an award), one student adapted his final course assignment into a first authored manuscript, and another into a first-authored, introductory chapter on Multilevel Modeling. I think balancing the acquisition of theoretical and conceptual statistical knowledge and analytic skills with real world application is not only helpful for meeting the competing needs of graduate students but also a means for increasing the retention of knowledge and skills obtained through coursework.

I apply a similar philosophy to my mentorship of graduate and undergraduate students. I strive to provide students with a well-balanced set of instructional and applied opportunities for intellectual and professional development tailored to their individual needs and career aspirations. For my graduate students, this includes mentorship and guidance in research and teaching and as well as supervision of clinical work with couples. My approach to mentoring in each of these domains is to provide graduated opportunities that are appropriate for their level of training and experience and that prepare them for more advanced opportunities. For example, I mentor my graduate students in submitting an application for an NSF Graduate Research Fellowship, submitting multiple conference abstracts, holding a leadership position in the major study being conducted in my lab, leading a smaller, independent research project in my lab, beginning preparation of a manuscript, and preparing their masters proposal during their first year. This collection of experiences is intended to help them jumpstart their research careers by focusing their efforts on concrete products that are intended for beginning graduate students while also providing
them with opportunities to develop the wide range of research skills that they will need to conduct their masters theses and dissertations as well as a foundation upon which to build the additional skills that they will need to run their own research programs. My approach to mentoring undergraduate students is similar in supporting highly motivated students in their pursuit of higher education. I seek to help students foster their intrinsic motivation and passion for learning about psychology by recruiting talented students to be research assistants on my research projects. I encourage particularly talented undergraduates interested in a research career to conduct a UROP-funded, independent project or an honors thesis in my lab. I have mentored 3 UROP students and 1 honors thesis student thus far at Utah; I mentored 6 honors thesis students while at USC and helped these students win 10 internal fellowships and 2 internal grants to further fund undergraduate work. Finally, I was pleased to serve as a research mentor for two Korean high school students who visited the U of Utah two summers ago as part of the Global Internship Program.

Recent teaching innovations

I have created and spearheaded collaborations with other faculty to create new opportunities for students to receive additional statistics education, training in couple therapy, and didactic instruction in clinically-oriented relationship science within the past two academic years. These new statistical opportunities include additional classes as well as new summer workshops that will be held at the University of Utah. New statistical courses include Advanced Methodological and Statistical Issues in Dyadic Research (PSY 6895) and Introduction to Quantitative Methods (PSY 5499/6499), which I spearheaded in collaboration with several additional faculty members. Advanced Methodological and Statistical Issues in Dyadic Research is a project-based seminar that focuses on the intersection of dyadic statistical techniques and substantive research questions about romantic relationships. The seminar style organization of the course allows me to focus instruction on advanced statistical techniques that are most relevant to the students own research interests. For example, previous curriculum have focused on how to adapt methods of intensive dyadic data analysis to small sample sizes and single case designs (Spring, 2015) and observational coding methods including traditional and technology-facilitated techniques(e.g., Machine Learning (Spring, 2016). Introduction to Quantitative Methods is a lecture style course that provides an applied introduction to statistical concepts and techniques needed to complete undergraduate honors. Additionally, the course provides graduate students with sufficient coverage of statistical material to complete a Masters thesis but is not intended for students who will go on to learn more advanced statistical methods. Such students should take Quantitative Methods I and II (PSY 5500/6500 and 5510/6510, respectively). This course will be offered by Samantha Joel for the first time in Fall, 2018.

The final new statistical training opportunity is a series of summer workshops that will be a part of the Inter-university Consortium for Political and Social Research (ICPSR) Summer Program in Quantitative Methods of Social Research (https://www.icpsr.umich.edu/icpsrweb/sumprog/). The workshop series will include introductory and intermediate material on dynamical systems (co-lead by Jonathan Butner and myself), models of change (lead by Pascal Deboeck), statistical genetics (lead by Daniel Adkins), and spatial and temporal regression (lead by Simon Brewer). University of Utah students will have an opportunity to take these workshops for free by volunteering to help with administrative aspects of the workshops. I spearheaded the creation of this opportunity in collaboration with the additional workshop leaders.

The new clinical training opportunity is training in couple therapy that I am conducting in collaboration with Dr. Katie Baucom; we are providing students with training in Integrative Behavioral Couple Therapy through a combination of didactic instruction, weekly supervision, and feedback on case reports. Students see couples referred from community partners and the National Center for Veterans Studies for a range of presenting problems as well as from referrals from Madsen Health Center for
couples where one or both partners meets criteria for Metabolic Syndrome. Dr. Baucom and I began offering this training in IBCT in the Fall of 2014 and began offering it as a class in Spring, 2017.

The new opportunity for training in clinically-oriented relationship science is a new seminar-style course, Etiology and Treatment of Relationship Distress (PSY 6960), that I offered for the first time in Spring, 2017. This courses reviews etiological models of and couple-based interventions for relationship distress, psychopathology, and physical disease/behavioral health conditions. Because we do not review actual clinical case material, I made the course available to undergraduate students on request and will continue to do so in the future.

Plans for developments in teaching

My plan for future development in teaching is to create an advanced multilevel modeling (MLM) course that will be offered for the first time in Spring, 2019. Similar to the way that the regression portion of Quantitative Methods II builds on the regression portion of Quantitative Methods I, advanced MLM will focus on MLMs for non-continuous outcomes (e.g., categorical and count variables), multivariate outcomes, and censored outcomes (e.g., events that could happen at any point in time but that may or may not have not happened by the end of a study). As it true of all departmental quantitative courses now, the course will include guiding instruction in estimating these models in a MLM-specific package (i.e., HLM) and R.